| Bahan Kajian | - Ruang linear
- Transformasi linier dan matriks
- Operasi vektor
- Sistem persamaan linier & solusinya (operasi baris elementer, invers, Cramer’s Rule, Dekomposisi LU)
- Fungsi determinan
- Masalah eigen
- Diagonalisasi matriks
- Fungsi kuadrat
- Solusi persamaan diferensial biasa tunggal (kandidat solusi, exact DE, Separable equation, Integrating factor, undetermined coefficients, variation of parameter, metode annihilator, transformasi Laplace)
- Solusi sistem persamaan diferensial biasa (variasi parameter, integrating factor/matriks exponential)
- Sistem linier
| - Linear Space, basis, and linear transformation
- System of linear equations
- Eigenvalues and eigenvector
- Matrix diagonalization
- Singular Value Decomposition
- Ordinary Differential Equation (ODE)
- System of ODEs
- System of ODEs with Non-constant Coefficients
- Introduction to nonlinear system and linearization
|
|---|
| Capaian Pembelajaran Mata Kuliah (CPMK) | - Memahami dan dapat menggunakan konsep ruang linier, transformasi linier, dan matriks sebagai representasi dari suatu transformasi linier, dan mampu melakukan operasi matriks
- Menghitung solusi sistem persamaan linier/matriks dengan metode: operasi baris elementer, invers, aturan Cramer, dan dekomposisi LU secara analitik
- Memahami definisi eigenvalue, eigenvector, singular value, dan kaitannya dengan beberapa parameter fisik sistem, serta dapat menyelesaikan masalah eigen serta dekomposisi singular value
- Memahami penggunaan persamaan diferensial dalam dunia sains dan rekayasa
- Menyelesaikan masalah PD Linier Orde 1, Orde 2, Orde-n, sistem persamaan diferensial linier orde 1dengan menggunakan berbagai metode
| - Understand and be able to use the concepts of linear space, linear transformations, and matrices as representations of linear transformations, and be able to perform matrix operations
- Calculating solutions to systems of linear/matrix equations using methods: elementary row operations, inverse, Cramer's rule, and analytical LU decomposition
- Understand the definition of eigenvalue, eigenvector, singular value, and their relationship to several physical parameters of the system, and be able to solve eigenproblems and singular value decomposition
- Solving Linear PD problems of Order 1, Order 2, Order-n, systems of linear differential equations of order 1, both with constant and non-constant parameters, using various methods
- Understanding the representation of nonlinear differential equations and the linearization process
|
|---|