Kode Mata KuliahFI2101 / 3 SKS
Penyelenggara102 - Physics / FMIPA
KategoriLecture
Bahasa IndonesiaEnglish
Nama Mata KuliahFisika Matematik IMathematical Physics I
Bahan Kajian
  1. Deret
  2. Bilangan Kompleks
  3. Aljabar Liniar
  4. Turunan Parsial
  5. Integral Lipat
  6. Analisa Vektor
  7. Deret dan Transforamsi Fourier
  8. Persamaan Diferensial Biasa
  1. Series
  2. Complex Numbers
  3. Linear Algebra
  4. Partial Derivatives
  5. Multiple integrals
  6. Vector Analysis
  7. Fourier Series and Transformation
  8. Ordinary Differential Equations
Capaian Pembelajaran Mata Kuliah (CPMK)
  1. Mampu menunjukkan kekonvergenan suatu deret serta menetukan fungsi dalam deret pangkat (deret Taylor dan deret Maclaurin)
  2. Mampu menetukan bagian real dan imajiner suatu bilangan kompleks serta melakukan operasi pada bilangan kompleks
  3. Mampu menyelesaikan operasi matriks, menyelesaikan persamaan linier dengan reduksi baris serta mampu menetukan nilai eigen dan vektor eigen serta diagonalisasi matriks
  4. Mampu menentukan diferensial total suatu persamaa dua peubah atau lebih, meneutkan aturan berantai serta turunan implisit, menetukan nilai maksimum dan minimum dari suatu persamann serta menggunakan pengali Lagrange untuk menyelesaikan permasalahan maksimum dan minimum
  5. Mampu menyelesaikan integral lipat dua dan tiga dan mampu mengaplikasikannya
  6. Mampu melakukan perkalian vektor, triple product, turunan vektor, medan, gradien, divergensi, rotasi serta, integral garis, teorema Green, teorema divergensi serta teorema Stoke
  7. Mampu menentukan koefisien Fourier, menentukan gungsi ganjil-genap serta mampu mengerjakan transformasi Fourier
  8. Mampu menyelsaikan metode penyelesaian Persamaan Diferensial Biasa (PDB) orde satu dan orde dua
  1. Able to show the convergence of a series and determine functions in power series (Taylor series and Maclaurin series)
  2. Able to determine the real and imaginary parts of a complex number and perform operations on complex numbers
  3. Able to complete matrix operations, solve linear equations with row reduction and be able to determine eigenvalues ​​and eigenvectors as well as matrix diagonalization
  4. Able to determine the total differential of an equation of two or more variables, connect chain rules and implicit derivatives, determine the maximum and minimum values ​​of an equation and use Lagrange multipliers to solve maximum and minimum problems
  5. Able to complete double and triple integrals and be able to apply them
  6. Able to do vector multiplication, triple product, vector derivative, field, gradient, divergence, rotation and, line integral, Green's theorem, divergence theorem and Stoke's theorem
  7. Able to determine Fourier coefficients, determine odd-even functions and be able to carry out Fourier transformations
  8. Able to solve methods for solving Ordinary Differential Equations (PDB) first order and second order
Metode PembelajaranCeramahLecture
Modalitas PembelajaranLuring Sinkron,Bauran/Daring AsinkronSynchronous Offline, Asynchronous Mixed/Online
Jenis NilaiABCDE
Metode PenilaianTugas, Ujian Tengah Semester, Ujian Akhir SemesterAssignments, Midterm Exams, Final Semester Exams
Catatan TambahanMKWP