Kode Mata KuliahKL2204 / 3 SKS
Penyelenggara155 - Ocean Engineering / FTSL
KategoriLecture
Bahasa IndonesiaEnglish
Nama Mata KuliahMatematika NumerikNumerical Mathematics
Bahan Kajian
  1. Sistem Persamaan Linier
  2. Analisis Numerik Dengan Menggunakan Deret Taylor
  3. Pendekatan Polinomial
  4. Polinomial Lagrange
  5. Polinomial Lagrange pada Sistem Koordinat Kurvilinier
  6. Metode Integrasi
  7. Metode Selisih Hingga
  8. Penyelesaian Persamaan Laplace
  9. Penyelesaian Persamaan Gelombang Panjang
  10. Matriks
  1. Linear Equation System
  2. Numerical Analysis Using Taylor Series
  3. Polynomial Approximation
  4. Lagrange polynomials
  5. Lagrange Polynomials on Curvilinear Coordinate Systems
  6. Integration Method
  7. Finite Difference Method
  8. Laplace Equation Solving
  9. Long Wave Equation Solving
  10. Matrix
Capaian Pembelajaran Mata Kuliah (CPMK)
  1. Mampu menerapkan konsep algoritma, pemodelan, dan kesalahan pada perhitungan metode numerik.
  2. Mampu melakukan perhitungan dengan metode analisis numerik dalam beberapa masalah rekayasa.
  3. Mampu menyelesaikan sistem persamaan linier (Metode Invers, Eliminasi Gauss, dan Gauss-Jordan), akar persamaan dan sistem persamaan nonlinier (Newton Rhapson), Aplikasi Deret Taylor (perhitungan turunan dengan metode selisih hingga dan aplikasinya.
  4. Mampu menyelesaikan permasalahan interpolasi fungsi, penyelesaian persamaan diferensial), metode numerik berbasis pendekatan polinomial (interpolasi polinomial, metode kuadrat terkecil, polinomial Lagrange dan aplikasinya.
  5. Mampu menyelesaikan perhitungan interpolasi, perhitungan turunan, integrasi numerik, penyelesaian diferensial waktu, transformasi koordinat)
  1. Able to apply the concepts of algorithms, modeling, and errors in numerical method calculations.
  2. Able to perform calculations with numerical analysis methods in several engineering problems.
  3. Able to solve systems of linear equations (Inverse Method, Gauss Elimination, and Gauss-Jordan), roots of equations and systems of nonlinear equations (Newton Rhapson), Taylor Series Applications (calculation of derivatives by the finite difference method and its applications.
  4. Able to solve function interpolation problems, solving differential equations), numerical methods based on polynomial approaches (polynomial interpolation, least squares method, Lagrange polynomial and its applications.
  5. Able to complete interpolation calculations, derivative calculations, numerical integration, time differential solutions, coordinate transformations). Lectures and tutorials
Metode PembelajaranKuliah dan tutorialCourse lectures and tutorials
Modalitas Pembelajaran- Segi penyerapan: visual dan auditorial - Segi pelaksanaan: sinkronus- In terms of absorption mode: visual and auditorial - In terms of implementation aspect: synchronous
Jenis NilaiABCDE
Metode PenilaianTugas, Kuis, Ujian Tengah Semester (UTS), Ujian Akhir Semester (UAS), dan Diskusi KelasAssignments, Quizzes, Midterm Exams (UTS), Final Semester Exams (UAS), and Class Discussions
Catatan Tambahan