Kode Mata KuliahWF5015 / 4 SKS
Penyelenggara236 - Aerospace Engineering / FTMD
KategoriLecture
Bahasa IndonesiaEnglish
Nama Mata KuliahMatematika Lanjut BAdvanced Mathematics B
Bahan Kajian
  1. Ruang linier, basis, dan transformasi linier
  2. Sistem persamaan linier
  3. Eigenvalues dan eigenvector
  4. Diagonalisasi matrix
  5. Singular Value Decomposition
  6. Persamaan Differensial Biasa
  7. Sistem Persamaan Differensial Biasa
  8. Sistem Persamaan Differensial Biasa dengan Koefisien Tak Konstan
  9. Pengenalan Sistem nonlinear dan linearisasi
  1. Linear Space, basis, and linear transformation
  2. System of linear equations
  3. Eigenvalues and eigenvector
  4. Matrix diagonalization
  5. Singular Value Decomposition
  6. Ordinary Differential Equation (ODE)
  7. System of ODEs
  8. System of ODEs with Non-constant Coefficients
  9. Introduction to nonlinear system and linearization
Capaian Pembelajaran Mata Kuliah (CPMK)
  1. Memahami dan dapat menggunakan konsep ruang linier, transformasi linier, dan matriks sebagai representasi dari suatu transformasi linier, dan mampu melakukan operasi matriks
  2. Menghitung solusi sistem persamaan linier/matriks dengan metode: operasi baris elementer, invers, aturan Cramer, dan dekomposisi LU secara analitik
  3. Memahami definisi eigenvalue, eigenvector, singular value, dan kaitannya dengan beberapa parameter fisik sistem, serta dapat menyelesaikan masalah eigen serta dekomposisi singular value
  4. Menyelesaikan masalah PD Linier Orde 1, Orde 2, Orde-n, sistem persamaan diferensial linier orde 1, baik dengan parameter konstan dan tidak konstan, dengan menggunakan berbagai metode
  5. Memahami representasi persamaan differensial nonlininer dan proses linierisasi
  1. Understand and be able to use the concepts of linear space, linear transformations, and matrices as representations of linear transformations, and be able to perform matrix operations
  2. Calculating solutions to systems of linear/matrix equations using methods: elementary row operations, inverse, Cramer's rule, and analytical LU decomposition
  3. Understand the definition of eigenvalue, eigenvector, singular value, and their relationship to several physical parameters of the system, and be able to solve eigenproblems and singular value decomposition
  4. Solving Linear PD problems of Order 1, Order 2, Order-n, systems of linear differential equations of order 1, both with constant and non-constant parameters, using various methods
  5. Understanding the representation of nonlinear differential equations and the linearization process
Metode PembelajaranTatap muka di kelas, Tutorial materi kuliah
Modalitas PembelajaranLuring, sinkron, Mandiri
Jenis NilaiABCDE
Metode PenilaianUjian Tengah Semester, Ujian Akhir Semester, Tugas
Catatan Tambahan