Kode Mata KuliahEL4031 / 3 SKS
Penyelenggara132 - Electrical Engineering / STEI
KategoriLecture
Bahasa IndonesiaEnglish
Nama Mata KuliahSistem Kendali MultivariabelMultivariable Control System
Bahan Kajian
  1. Pengantar Sistem Kendali Multivariabel
  2. Representasi Sistem dalam Ruang Keadaan
  3. Solusi Persamaan Keadaan Waktu-Invarian
  4. Controllability
  5. Observability
  6. Penempatan Pole
  7. Desain Observer
  8. Desain Kompensator
  9. Simulasi Sistem Kendali Multivariabel
  10. Implementasi Sistem Kendali Multivariabel dengan Observer dan Umpan Balik Keadaan
  1. Introduction to Multivariable Control System
  2. State Space Representation of System
  3. Solving The Time-Invariant State Equation
  4. Controllability
  5. Observability
  6. Pole Placement
  7. Observer Design
  8. Compensator Design
  9. Multivariable Control System Simulation
  10. Implementation of Multivariable Control System with Observer and State Feedback
Capaian Pembelajaran Mata Kuliah (CPMK)
  1. Menjelaskan perspektif desain ruang keadaan dan keuntungan ruang keadaan; memodelkan sistem nonlinear secara matematis dan melakukan linearisasi sistem.
  2. Memodelkan sistem dalam bentuk state-space; merepresentasikan sistem dalam bentuk kanonik: merepresentasikan sistem dalam bentuk diagonal-jordan yang dapat diamati-terkontrol, menghitung transformasi model sistem.
  3. Mendesain sistem kendali multivariabel dengan metode state-feedback; menghitung solusi persamaan keadaan homogen; menghitung solusi persamaan keadaan non-homogen, menenentukan keterkendalian suatu sistem; menentukan observabilitas suatu sistem; memiilih lokasi kutub untuk desain yang baik; menerapkan metode desain dengan penempatan kutub, menentukan matriks K menggunakan transformasi matriks, substitusi langsung, atau formula Ackermann
  4. Mengimplementasikan sistem kendali multivariabel dengan state-feedback pada simulasi dan hardware.
  5. Menerapkan prosedur desain sistem servo; menerapkan prosedur desain pengamat orde penuh; menerapkan prosedur desain observer orde minimum; menerapkan prosedur desain sistem regulator; menerapkan prosedur desain sistem pelacakan.
  6. Mensimulasikan observer orde-penuh dan observer orde-minimum; menerapkan sistem kendali multivariabel dengan observer dan umpan balik keadaan.
  1. Able to explain the design perspective of state space and the advantages of state space; mathematically model a nonlinear system and linearize the system.
  2. Able to model system in state-space representation; represent system in canonical form: represent system in observable-controllable diagonal-Jordan form, calculate the transformation of the system model.
  3. Able to design multivariable control system using state-feedback method; compute the solution of homogeneous state equations; compute the solution of non-homogeneous state equation, determine the controllability of a system; determine the observability of a system; determine pole locations for good design; apply control design using method with pole placement method, determine the K matrix using matrix transformation, direct substitution, or Ackermann's formula
  4. Able to implement a multivariable control system with state-feedback on simulation and hardware.
  5. Able to implement servo system design; implement full-order observer design procedures; implement the minimum order observer design procedure; implement the design procedure of the regulator system; Implement tracking system design procedures.
  6. Able to simulate full-order observers and minimum-order observers; implement a multivariable control system with observers and state feedback.
Metode PembelajaranCeramah, Diskusi, Proyek, Belajar MandiriLectures, Discussions, Project, Independent Study
Modalitas PembelajaranLuring, DaringOffline, Online
Jenis NilaiABCDE
Metode PenilaianPR, Kuis, Ujian, ProyekHomework, Quiz, Exam, Project
Catatan Tambahan