Kode Mata KuliahAS2204 / 3 SKS
Penyelenggara103 - Astronomi / FMIPA
KategoriKuliah
Bahasa IndonesiaEnglish
Nama Mata KuliahMetode Matematika dalam Astronomi IIMathematical Methods in Astronomy II
Bahan Kajian
  1. Polinom dan Aproksimasi Fungsi [Aturan Descartes]. Bilangan kompleks. Persamaan diferensial homogen, Persamaan Bernoulli, PDB tingkat-2 homogen dan non-homogen, Operaor Diferensial Vektor Del, Koordinat Lengkung, Koordinat Silinder, Koordinat Bola, Koordinat Eliptik Silinder, Koordinat Parabolik Silinder, Koordinat Elipsoidal, Gradien dalam Koordinat Silinder dan Bola, Divergensi dalam Koordinat Silinder dan Bola, Curl dalam Koordinat Silinder dan Bola, Kalkulus Variasi, Fungsi Khusus, Fungsi Gamma, Fungsi Beta, Solusi deret persamaan diferensial, Polinom Legendre, Fungsi Bessel. Persamaan diferensial parsial: Persamaan gelombang, Persamaan hantaran panas, Persamaan Laplace, Persamaan Poisson, Persamaan Euler. Tansformasi Fourier.
  1. Polynomial and Function Approximation [Descartes' Rule]. Complex numbers. Homogeneous differential equations, Bernoulli equation, level-2 homogenic and non-homogenic PDB, Vector Differential Operator Del, Curved Coordinates, Cylinders Coordinate, Ball coordinates, Eliptic Coordinates of Cylinners, Parabolic Coordinates Of Cylins, Ellipsoidal Coordinates. Gradients in Cylinder and Ball Coordinates., Divergence in Cillinders and Balls coordinates. Curls in Cyllinders & Balls. Variation calculus. Special functions. Gamma function. Beta function. Difference equation line solutions. Polinom Legendre. Bessel function. Partial differential equations: wave equations, heat transmission equation, Laplace equation. Fourier transformation.
Capaian Pembelajaran Mata Kuliah (CPMK)
  1. Memahami bilangan kompleks
  2. Memahami dan dapat menghitung koordinat lengkung (penerapan gradien, divergensi, dan curl dalam transformasi sistem koordinat: metrik, dll.)
  3. Memahami sifat-sifat Polinomial dan fungsi aproksimasi (kaidah Descartes)
  4. Memahami dan dapat menghitung persamaan persamaan diferensial
  5. Memahami dan dapat menghitung kalkulus variasi
  6. Memahami dan dapat menghitung fungsi-fungsi khusus (fungsi Faktorial, fungsi Gamma, dan fungsi Gamma, dan fungsi Beta)
  7. Memahami dan dapat menghitung solusi deret untuk persamaan diferensial (persamaan Legendre dan persamaan Bessel)
  8. Memahami dan dapat menghitung integral transformasi (transformasi Laplace, transformasi Fourier, dan fungsi Green)
  9. Memahami dan dapat menghitung diferensial parsial dan persamaan diferensial parsial
  1. Understanding complex numbers
  2. Understand and be able to calculate curve coordinates (gradient, divergence, and curl in coordinate system transformation: metric, etc)
  3. Understanding polynomial properties and approximation functions (Descartes rule)
  4. Understand and be able to calculate differential equations
  5. Understand and be able to calculate variation calculus
  6. Understand and be able to calculate special functions (Factorial, Gamma function, and Beta function)
  7. Understand and be able to calculate row solutions for differential equations (Legendre and Bessel equation)
  8. Understanding and being able to compute integral transformations (Laplace transform, Fourier transform, and Green’s function)
  9. Understand and be able to calculate partial differential and partial difference equations
Metode PembelajaranCeramahLectures
Modalitas PembelajaranSinkron dan/atau asinkronsynchronous and/or asynchronous
Jenis NilaiABCDE
Metode PenilaianKuis, Tugas, UTS, UASQuiz, Task, Mid Semester Exam, Final Semester Exam
Catatan Tambahan