Bahan Kajian | - Ruang linier, basis, dan transformasi linier
- Sistem persamaan linier
- Eigenvalues dan eigenvector
- Diagonalisasi matrix
- Singular Value Decomposition
- Persamaan Differensial Biasa
- Sistem Persamaan Differensial Biasa
- Sistem Persamaan Differensial Biasa dengan Koefisien Tak Konstan
- Pengenalan Sistem nonlinear dan linearisasi
| - Linear Space, basis, and linear transformation
- System of linear equations
- Eigenvalues and eigenvector
- Matrix diagonalization
- Singular Value Decomposition
- Ordinary Differential Equation (ODE)
- System of ODEs
- System of ODEs with Non-constant Coefficients
- Introduction to nonlinear system and linearization
|
---|
Capaian Pembelajaran Mata Kuliah (CPMK) | - Memahami dan dapat menggunakan konsep ruang linier, transformasi linier, dan matriks sebagai representasi dari suatu transformasi linier, dan mampu melakukan operasi matriks
- Menghitung solusi sistem persamaan linier/matriks dengan metode: operasi baris elementer, invers, aturan Cramer, dan dekomposisi LU secara analitik
- Memahami definisi eigenvalue, eigenvector, singular value, dan kaitannya dengan beberapa parameter fisik sistem, serta dapat menyelesaikan masalah eigen serta dekomposisi singular value
- Menyelesaikan masalah PD Linier Orde 1, Orde 2, Orde-n, sistem persamaan diferensial linier orde 1, baik dengan parameter konstan dan tidak konstan, dengan menggunakan berbagai metode
- Memahami representasi persamaan differensial nonlininer dan proses linierisasi
| - Understand and be able to use the concepts of linear space, linear transformations, and matrices as representations of linear transformations, and be able to perform matrix operations
- Calculating solutions to systems of linear/matrix equations using methods: elementary row operations, inverse, Cramer's rule, and analytical LU decomposition
- Understand the definition of eigenvalue, eigenvector, singular value, and their relationship to several physical parameters of the system, and be able to solve eigenproblems and singular value decomposition
- Solving Linear PD problems of Order 1, Order 2, Order-n, systems of linear differential equations of order 1, both with constant and non-constant parameters, using various methods
- Understanding the representation of nonlinear differential equations and the linearization process
|
---|