| Kode Mata Kuliah | FI5001 / 3 SKS | 
|---|
| Penyelenggara | 202 - Fisika / FMIPA | 
|---|
| Kategori | Kuliah | 
|---|
 | Bahasa Indonesia | English | 
|---|
| Nama Mata Kuliah | Mekanika Analitik | Analytical Mechanics | 
|---|
| Bahan Kajian | - Formalisme Lagrange dalam sistem mekanika klasik
 - Prinsip variasi dan sistem dengan kendala
 - Formulasi Hamilton dalam sistem mekanika klasik
 - Ruang fase dan transformasi kanonik
 - Prinsip simetri dan hukum kekekalan
 - Formulasi Lagrange dan Hamilton untuk sistem dan medan kontinu
 
  | - Lagrange's formalism in classical mechanics
 - Principles of variation and systems with constraints
 - Hamilton's formulation in classical mechanics
 - Phase spaces and canonical transformations
 - Principles of symmetry and conservation laws
 - Lagrange and Hamilton formulations for continuous systems and fields
 
  | 
|---|
| Capaian Pembelajaran Mata Kuliah (CPMK) | - Mahasiswa mampu memahami konsep mekanika Lagrange dan dapat mengaplikasikannya dalam konfigurasi sederhana.
 - Mahasiswa mampu memahami konsep formulasi Hamilton dan ruang fasa dalam sistem mekanika.
 - Mahasiswa mengenal prinsip simetri dalam sistem mekanika.
 - Mahasiswa mengenal formulasi Lagrange dan Hamilton untuk sistem dan medan kontinu
 
  | - Students are able to understand the concept of Lagrange mechanics and can apply it in simple configurations.
 - Students are able to understand the concept of Hamiltonian formulation and phase space in mechanical systems.
 - Students get to know the principle of symmetry in mechanical systems.
 - Students become familiar with Lagrange and Hamilton's formulations for continuous systems and fields
 
  | 
|---|
| Metode Pembelajaran | Ceramah, diskusi kelompok. | Lectures, group discussions. | 
|---|
| Modalitas Pembelajaran | Luring Sinkron, Bauran/Daring Asinkron | Synchronous Offline, Asynchronous Mixed/Online | 
|---|
| Jenis Nilai | ABCDE | 
|---|
| Metode Penilaian | UTS, UAS, Tugas dan Kuis | UTS, UAS, Assignments and Quizzes | 
|---|
| Catatan Tambahan | MKWP | MKWP | 
|---|